domingo, 28 de abril de 2013

La espermatogénesis

Es un proceso que se lleva a cabo en los testículos (gónadas), que son las glándulas sexuales masculinas. En su interior se encuentran los túbulos seminíferos, pequeños conductos enrollados de 30-60 cm de longitud y 0,2 mm de diámetro cada uno. Los dos testículos contienen alrededor de un millar de túbulos seminíferos. En el epitelio de los túbulos asientan las células germinativas o espermatogonias y las células de Sertoli. El corte transversal del túbulo seminífero permite distinguir las diferentes etapas de la espermatogénesis, por ejemplo, espermatogonias en la capa basal, espermatocitos en división meiótica o liberación de espermatozoides hacia el lumen del túbulo.



                             


 la espermatogénesis tiene una duración de 70-75 días, lapso de tiempo necesario para la diferenciación de espermatogonias en espermatozoides. Se inicia en la madurez sexual y se mantiene casi hasta el final de la vida. A partir una célula germinal diploide se generan cuatro células sexuales haploides producto de divisiones por mitosis y meiosis. Por lo tanto, la espermatogénesis consta de tres etapas: reproducción, crecimiento y maduración.





 Dentro de los túbulos seminíferos, rodeando a las células germinales, se encuentran las células de Sertoli. Cuando se llega a la pubertad, dichas células dejan de reproducirse ni bien comienza la espermatogénesis y dan lugar a la llamada barrera hematotesticular. Esta barrera está compuesta por células de Sertoli que se adhieren firmemente interponiéndose entre los capilares sanguíneos y el epitelio de los túbulos seminíferos, impidiendo así la acción inmunológica de los linfocitos. Cabe señalar que el proceso meiótico que se establece en la espermatogénesis genera proteínas que, de incursionar en el torrente sanguíneo, daría lugar a la formación de anticuerpos que atentaría contra la fertilidad de la especie. Por lo tanto, la barrera hematotesticular cumple con la importante misión de evitar la reacción de los linfocitos y de estimular la evolución y migración de los espermatocitos hacia la luz tubular. Otra función importante de las células de Sertoli es la nutrición de las células espermatogénicas, habida cuenta de que las espermatogonias no tienen acceso a los nutrientes que provee la sangre debido a la barrera antes mencionada. Además, las células de Sertoli producen fructosa, eliminan restos citoplasmáticos de las espermátidas y mantienen un medio adecuado para la transformación de las células germinales. 


BOMBA NA-K


      Transporte activo


       El transporte activo requiere un gasto de energía para transportar la molécula de un lado al otro de la membrana, pero el transporte activo es el único que puede transportar moléculas contra un gradiente de concentración, al igual que la difusión facilitada el transporte activo esta limitado por el numero de proteínas transportadoras presentes.

        El transporte activo, en cambio, requiere por parte de la célula un gasto de energía que usualmente se da en la forma de consumo de ATP. Ejemplos del mismo son el transporte de moléculas de gran tamaño (no solubles en lípidos) y la bomba sodio-potasio.

        La bomba sodio-potasio usa energía (generalmente obtenida de la hidrólisis de ATP), a nivel de la misma proteína de membrana produciendo un cambio conformacional que resulta en el transporte de una molécula a través de la proteína. 


      Observe en la siguiente animación como funciona la bomba sodio-potasio.


                              bomba 

             

        
      En el modelo de la bomba sodio-potasio:
      1. Tres iones Na+ provenientes del citoplasma se insertan con precisión en la proteína de transporte.
      2. Luego, una reacción química que involucra al ATP une un grupo fosfato (P) a la proteína, liberándose ADP (difosfato de adenosina). 
      3. Este proceso da como resultado un cambio en la conformación de la proteína que hace que el Na+sea liberado afuera de la célula.
      4. Dos iones K+ en el espacio extracelular se insertan en la proteína de transporte, que en esta conformación ofrece una mejor acopladura para el K+ que para el Na+.
      5. El grupo fosfato luego se libera de la proteína, induciendo la conversión a la otra forma, y el K+ es liberado en el citoplasma. Ahora, la proteína está lista una vez más para transportar Na+ hacia fuera de la célula.
        La bomba de sodio-potasio (enlace a video) está presente en todas las células animales. La mayoría de las células mantienen un gradiente de concentración de iones sodio (Na+) y potasio (K+) a través de la membrana celular: el Na+ se mantiene a una concentración más baja dentro de la célula y el K+ se mantiene a una concentración más alta. 


      REPRODUCCIÓN ASEXUAL
      Algunos organismos se pueden reproducir de forma asexual, es decir no intervienen las células sexuales. En este caso, una célula hija del progenitor se separa y forma un individuo completo. En este tipo de reproducción un solo progenitor interviene y para lo cual no existen células u órganos reproductores especiales. (Gama, 1997)
      La reproducción asexual resulta del proceso de división celular o mitosis. De esta división se separan células nuevas de un solo progenitor. Existen varios tipos de reproducción asexual mediante las cuales las características hereditarias de los descendientes son idénticas a las del progenitor, es común en los microorganismos, plantas y animales de organización simple. (Idem)
      Los organismos celulares más simples se reproducen por un proceso conocido como fisión o escisión, en el que la célula madre se fragmenta en dos o más células hijas, perdiendo su identidad original. La división celular que da lugar a la proliferación de las células que constituyen los tejidos, órganos y sistemas de los organismos pluricelulares no se considera una reproducción, aunque es casi idéntica al proceso de escisión binaria. En ciertos animales pluricelulares, tales como celentéreos, esponjas y tunicados, la división celular se realiza por yemas. Estas se originan en el cuerpo del organismo madre y después se separan para desarrollarse como nuevos organismos idénticos al primero. Este proceso, conocido como gemación, es análogo al proceso de reproducción vegetativa de las plantas. Procesos reproductores como los citados, en los que un único organismo origina su descendencia, se denominan científicamente reproducción asexual. En este caso, la descendencia obtenida es idéntica al organismo que la ha originado. (Idem)
      Fisión binaria y múltiple
      Es un tipo de reproducción asexual que se caracteriza por la división de un cuerpo en dos o más partes, cada una de las cuales forma un individuo completo. La fisión en dos partes, o binaria, puede ser idéntica a una división celular, o implicar una reorganización del citoplasma y la formación de estructuras celulares nuevas. La fisión es frecuente en los organismos unicelulares, pero rara en los multicelulares, ya que requiere la regeneración de partes especializadas en cada uno de los descendientes. En los microorganismos la fisión binaria puede ser transversal (se produce a lo ancho del organismo), como en el caso del paramecio, o longitudinal (a lo largo del organismo), como en la euglena, un flagelado colonial.
      La fisión múltiple puede comprender varias escisiones binarias sucesivas que tienen lugar en el interior de una cubierta, como en los esporozoos, un tipo de protozoos parásitos; o consistir en divisiones repetidas del núcleo seguidas de la división del citoplasma en tantas partes como núcleos existan, como en el protozoo palúdico. En ocasiones, algunos gusanos (las planarias y ciertos anélidos) se reproducen mediante fisión.1
      Reproducción sexual y asexual
      Fisión de una amiba
      Esporulación
      En los hongos y ciertas plantas, la reproducción asexual se efectúa por la formación de esporas. Estas son cuerpos pequeños que contienen un núcleo y una pequeña porción de citoplasma. Las esporas de los organismos terrestres, son por lo general, muy livianas y poseen una pared protectora. Estos dos rasgos determinan que la esporulación sea algo más que un simple mecanismo de reproducción. Su tamaño pequeño y su peso liviano las habilita para ser transportadas a grandes distancias por medio de corrientes de aire. Así las esporas funcionan como agentes de dispersión , que hacen posible la propagación del organismo en nuevos lugares.
      Reproducción sexual y asexual
      Reproducción sexual y asexual
      La cubierta resistente de la espora desempeña a menudo otra función útil. Permite que la placa se mantenga protegida en estado de vida latente a través de periodos de los cuales prevalecen condiciones desfavorables que serían fatales `para el organismo en proceso de crecimiento vegetativo activo. No es sorprendente que este tipo de esporas se produzcan más rápidamente cuando las condiciones de temperatura, humedad o alimentación se tornan desfavorables.2
      Ciertas algas verdes y en los hongos acuáticos, las esporas no representan estados de reposo. En Chlamydomonas una sola célula se divide de una a tres veces, y da origen a dos u ocho pequeñas zoosporas. Cada una esta dotada de su núcleo, citoplasma y dos flagelos. Después de haber sido liberado, cada zoospora crece hasta alcanzar el tamaño de la célula madre. Algunas algas sedimentarias utilizan las zoosporas no solo como mecanismo de reproducción, sino también como medio de dispersión. Con ayuda de los flagelos nadan y dispersan la especie a nuevos lugares.2
      Los hongos producen esporas en abundancia. Un solo micelio de lycoperdon produce alrededor aproximadamente 700 millones de esporas en cada período en sus esporangios. Por medio de aviones, se han podido recoger esporas del hongo de la roya del trigo a una altura de 4300 metros. Si se deja un pedazo de pan húmedo (que no contenga sustancias inhibidoras del crecimiento del moho) en un lugar caliente, oscuro y expuesto a las corrientes del aire se desarrolla un micelio abundante y exuberante que muestra cuan amplia es la distribución de las esporas de este hongo. Los musgos, los licopodios y los helechos producen también enorme cantidad de esporas pequeñas que se dispersan por el viento y sirven para propagar la especie a nuevas localidades.2
      Gemación
      Muchas esponjas y cnidarios, como la hidra y algunas anémonas se reproducen por gemación. Una versión en miniatura del animal (una yema) crece directamente sobre el cuerpo del adulto, obteniendo los nutrimentos de su progenitor. Cuando ha crecido lo suficiente, la yema se desprende y se hace independiente.
      Audesirk, 1997
      Reproducción sexual y asexual
      Gemación de una levadura
      Partenogénesis
      Es el desarrollo de un organismo a partir de un gameto, o célula sexual, sin fecundar. Es común en el reino animal hasta la clase Insecta(Insectos), pero a partir de este grupo, ocurre sólo en contadas ocasiones. Los mecanismos que atañen a este proceso aún no se conocen bien. Algunos grupos de anfibios, reptiles y aves pueden reproducirse por partenogénesis, pero los embriones de mamíferos obtenidos de esta manera en experimentos, mueren tras un periodo de días. La partenogénesis también se da, con menor frecuencia, entre las plantas inferiores. En las plantas, la producción biológica de frutos sin previa fecundación se llama partenocarpia. Estos frutos no tienen semillas.1
      Reproducción sexual y asexual
      Poliembrionía
      Ciertos insectos presentan un tipo único de desarrollo embrionario, en el que un único huevo da lugar a más de un embrión, proceso conocido como poliembrionía y, en algunas especies, un solo huevo da lugar a más de 100 larvas por división en el interior del mismo. Es un acaso de reproducción asexual en mamíferos vertebrados. Ej. Armadillo. En este animal la reproducción es sexual al principio, pero luego el embrión se fragmenta y da lugar a embriones iguales.1
      Reproducción vegetativa
      Es decir, sin unión de células o núcleos de células— de los vegetales, de manera que el individuo resultante es, desde el punto de vista genético, idéntico al parental. La reproducción vegetativa tiene lugar por fragmentación o a partir de estructuras asexuales especiales. Partes de hepáticas y musgos se desgajan de la planta parental y se transforman en individuos nuevos, y lo mismo ocurre con los esquejes. Son estructuras asexuales especializadas las esporas, los tubérculos, los bulbos, los estolones o tallos rastreros y ciertas raíces. A partir de esporas se forman, por ejemplo, nuevos helechos; las papas o patatas a partir de los ojos del tubérculo; las plantas de ajo a partir de los dientes del bulbo, o fresales a partir de los estolones que emite la planta de la fresa.
      • Rizomaes un tallo horizontal, subterráneo, que puede o no ser pulposo, para almacenamiento de alimento. Aunque los rizomas pueden semejar a las raíces, son en realidad tallos, como lo indican la presencia de hojas en forma de escamas, yemas, nodos y internodos. Los rizomas con frecuencia se ramifican en diferentes direcciones y su porción vieja muere, separando las dos ramas en plantas diferentes. El iris y muchos pastos son ejemplos de plantas con rizomas. Los humanos las propagan dividiéndolos o cortándolos en piezas mas pequeñas, cada una con una yema. Cada pieza es capaz de formar una planta completa.3
      • Tubérculoes un tallo subterráneo el cual esta muy aumentado de tamaño para el almacenamiento de alimento. La papa blanca y el caladiumson ejemplos de plantas que producen tubérculos. Los “ojos” de la papa blanca son en realidad yemas laterales, la cual confirma que los tubérculos son tallos subterráneos y no raíces. Los seres humanos propagan los tubérculos contándolo en pedazos cada uno con una yema lateral. Cuando se planta un tubérculo, cada uno da lugar a una planta completa.3
      • Bulboes una tallo subterráneo acortado, al cual se adhieren hojas pulposas que almacenan alimento. Los bulbos son globosos o redondos, cubiertos de escamas con apariencia de papel. Estas escamas forman pequeños bulbos que inicialmente están unidos al bulbo madre. Los humanos separan estos bulbos para aumentar el numero de plantas, pero este proceso también se lleva a cabo en la naturaleza. Las raíces contráctiles de algunos bulbos se contraen y eventualmente separan al bulbo hijo del bulbo madre. Lirios, tulipanes, cebollas y narcisos forman bulbos.3
      • Cormoes una tallo subterráneo que semeja superficialmente al bulbo. En el, el órgano de almacenamiento es el tallo engrosado y no las hojas, como en el bulbo. Todo el cormo esta formado por tejido de tallo, cubierto por escamas de apariencia de papel, que son hojas modificadas, y se unen a este en nodos. Con frecuencia se observan yemas laterales. Entre las plantas que producen cormos se encuentran el azafrán, la gladiola y el ciclamen.3
      • EstolónEs un tallo que corre sobre la superficie del suelo. De sus yemas pueden originarse, además de raíces adventicias, nuevos tallos con hojas y yemas, los que, al morir el estolón, pasan a constituir plantas independientes. Como por ejemplo la frutilla.3
      Regeneración reproductiva o fragmentación
      Algunas plantas y animales llevan acabo la reproducción sexual por fragmentación. En estas especies el cuerpo del organismo se fragmenta en varias partes; cada una de ellas puede luego regenerar todas las estructuras del organismo adulto. Una vez que el gusano completa el crecimiento, se rompe en ocho o nueve fragmentos. Cada uno de ellos desarrolla luego un gusano adulto que repite el proceso. (Audesirk, 1997).
      Por lo general, el proceso de fragmentación depende de factores externos. Las algas pardas y verdes de las costas marinas se rompen a menudo en pedazos debido a la acción de las olas. Cada fragmento puede crecer hasta alcanzar el tamaño completo. También en el agua dulce los fragmentos de las algas frecuentemente se rompen. Mediante la fisión celular cada fragmento se establece rápidamente el filamento completo. (Idem).
      Los jardineros se valen de manera deliberada de la fragmentación para reproducir asexualmente variedades de sedas de plantas. Esto se hace mediante estacas. Si la operación se hace con cuidado, las estacas desarrollan raíces y hojas que pueden continuar existiendo independientemente. (Idem).
      Reproducción sexual y asexual

      Fragmentación planaria


      OVOGENESIS



      Las fases de la ovogénesis

      Fase de multiplicación

      • Fase de multiplicación. Las células germinales, que se encuentran en el ovario, se dividen por mitosis y dan lugar a las ovogonias. Esta fase ocurre antes del nacimiento.

      Fase de crecimiento

      • Fase de crecimiento. Las ovogonias crecen debido a la acumulación de sustancias de reserva. Se transforman así en ovocitos de primer orden, que están alojados en una especie de vesículas rodeadas por unas células llamadas foliculares. El conjunto del ovocito y su cubierta de células constituye al folículo de Graaf. Los ovocitos que contienen han comenzado la primera división meiótica, pero se encuentran detenidos en la profase. Por tanto, también se detiene la gametogénesis. Esta fase también ocurre durante la fase fetal.

      Fase de maduración

      • Fase de maduración. Con el inicio de la pubertad, se reanuda la gametogénesis. Varios ovocitos de primer orden comienzan a aumentar de tamaño y terminan la primera división meiótica. Se origina, por tanto, un ovocito de segundo orden (con 23 cromosomas formados por dos cromátidas) y un corpúsculo polar que degenera. Para que continúe el proceso debe producirse la fecundación. Esto hace que tenga lugar la segunda división meiótica y se forme el óvulo, que tiene 23 cromosomas, cada uno de ellos con una cromátida. También se desarrolla un segundo corpúsculo polar. Puesto que ya se ha producido la fecundación, en el interior del óvulo se encuentra, además de su núcleo, el del espermatozoide.



      APARATO REPRODUCTOR MASCULINO Y FEMENINO


      MASCULINO:




      El aparato reproductor masculino está formado por los siguientes elementos: 








      Testículos. En su interior se encuentran los tubos seminíferos que son los que producen los espermatozoides. Están alojados en unas bolsas de piel llamadas escroto fuera del interior del cuerpo. 

      Conductores genitales:  Los conductos parten desde el epidídimo, situado en la parte superior del testículo, que es el lugar donde se almacenan los espermatozoides.Desde aquí se continúan por el espermiducto hacia la uretra y de ahí al exterior.

       Vesículas seminales y próstata. Son glándulas que vierten ciertas sustancias sobre los espermatozoides formando el semen o esperma.

       Pene. Es el órgano copulador necesario para asegurar la introducción del semen en el interior del aparato sexual femenino. La uretra recorre el interior del pene, cuya parte anterior es un ensanchamiento denominado glande, recubierto por un pliegue de piel llamado prepucio.




      Femenino:










      El aparato reproductor femenino se encarga de producir los óvulos, de recibir los espermatozoides y, si hay fecundación, de albergar al embrión durante su desarrollo
      . Casi todos los órganos del aparato reproductor femenino están situados en el interior del abdomen. Son: 

      • Los ovarios. Son dos, ovalados, del tamaño de una nuez y se sitúan a la altura del bajo vientre. 

      • Las trompas de Falopio. Son dos, son unos canales de unos 10 cm de longitud que parten de cada uno de los ovarios y que conectan con el útero.

      • El útero. Es un órgano hueco, con la forma y el tamaño de una pera y gruesas paredes musculares. Su parte más estrecha, llamada cuello, conecta con la vagina. 

      • La vagina. Es un conducto muscular que comunica el útero con el exterior.

       La vulva. Es la parte externa. Consiste en unos pliegues depiel, llamados labios, que se disponen sobre los orificios de la vagina y la uretra. En la mujer, el conducto de la uretra no está relacionado con el aparato reproductor. 




































                                                        

      Fecundación


        

















      Una vez formados los gametos, para que se produzca un nuevo ser es necesario que el óvulo y el espermatozoide se junten y fusionen, a este proceso se le denomina fecundación. En la especie humana la fecundación es interna, es decir se produce dentro del cuerpo de la mujer, concretamente en las Trompas de Falopio
      Para ello es necesario que se produzca la copulación o coito que consiste en la introducción del pene en la vagina y la posterior eyaculación del semen (aunque, como veremos más adelante, en la actualidad existen técnicas de reproducción asistida mediante las cuales pude darse una fecundación in vitro, en el laboratorio). 



      Si no hay ningún obstáculo (algún método anticonceptivo) el semen pasará por la vagina, atravesará el útero y llegará a lasTrompas de Falopio. De los cientos de miles de espermatozoides, solamente unos pocos llegarán hasta el óvulo y solamente uno podrá atravesar la membrana plasmática del óvulo y producirse la fecundación. Todos los demás espermatozoides son destruidos en el viaje. La razón de producirse millones de espermatozoides es para garantizar que, al menos uno, pueda alcanzar el óvulo.  
      El óvulo fecundado es una nueva célula que vuelve a tener 46 cromosomas, ya que tendrá los 23 cromosomas del óvulo mas los 23 del espermatozoide y se denomina Cigoto. El cigoto comenzará un viaje hasta implantarse en el útero
      cigoto
      estadio de 2 células
      embrión de 4 células
      embrión de 6 células
      embrión de 8 células


      ANTICONCEPTIVOS 








      Durante este viaje comienza a dividirse y empieza a desarrollarse como embrión. A partir de las 16 células se empieza hablar de mórula, ya que su aspecto recuerda a una mora.

      Mórula, a los 4 días
                           






















      No hay comentarios:

      Publicar un comentario